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Abstract

This study gives a detailed derivation of the heat and mass transfer equations of evaporative cooling in wet-cooling

towers. The governing equations of the rigorous Poppe method of analysis are derived from first principles. The method

of Poppe is well suited for the analysis of hybrid cooling towers as the state of the outlet air is accurately predicted. The

governing equations of the Merkel method of analysis are subsequently derived after some simplifying assumptions are

made. The equations of the effectiveness-NTU method applied to wet-cooling towers are also presented. The governing

equations of the Poppe method are extended to give a more detailed representation of the Merkel number. The differ-

ences in the heat and mass transfer analyses and solution techniques of the Merkel and Poppe methods are described

with the aid of enthalpy diagrams and psychrometric charts. The psychrometric chart is extended to accommodate air

in the supersaturated state.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The governing equations for heat and mass transfer

in the fill of a counterflow cooling tower are derived in

this paper. The governing equations for the Merkel [1],

Poppe and Rögener [2] and e-NTU [3] methods are pre-

sented. The Merkel method, developed in the 1920s, re-

lies on several critical assumptions to reduce the solution

to a simple hand calculation. Because of these assump-

tions, however, the Merkel method does not accurately
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represent the physics of the heat and mass transfer proc-

ess in the cooling tower fill.

The critical simplifying assumptions of the Merkel

method are [4]:

• The Lewis factor relating heat and mass transfer is

equal to 1. This assumption has a small influence

but affects results at low ambient temperatures.

• The air exiting the tower is saturated with water

vapor and it is characterized only by its enthalpy.

This assumption regarding saturation has a negligible

influence above an ambient temperature of 20 �C but

is of importance at lower temperatures.

• The reduction of water flow rate by evaporation is

neglected in the energy balance. This energy balance

simplification has a greater influence at elevated

ambient temperatures.
ed.
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Nomenclature

A area, m2

a surface area per unit volume, m�1

C heat capacity rate mcp, W/K, or fluid capac-

ity rate ratio , Cmin/Cmax,

cp specific heat at constant pressure, J/kgK

e effectiveness

G mass velocity, kg/m2s

h heat transfer coefficient, W/m2K

hd mass transfer coefficient, kg/m2s

i enthalpy, J/kg

ifg latent heat, J/kg

Lef Lewis factor, h/(cphd)

m mass flow rate, kg/s

Me Merkel number, hdafiLfi/Gw

NTU number of transfer units

p pressure, N/m2, or Pa

Q heat transfer rate, W

T temperature, �C or K

U overall heat transfer coefficient, W/m2K

w humidity ratio, kg water vapor/kg dry air

z coordinate, or elevation, m

Subscripts

a air

c convection heat transfer, or cold

e e-NTU method

fi fill

h hot

i inlet

M Merkel method

m mean, or mass transfer

max maximum

min minimum

o outlet

P Poppe method

s saturation

ss supersaturated

v vapor

w water

wb wetbulb

766 J.C. Kloppers, D.G. Kröger / International Journal of Heat and Mass Transfer 48 (2005) 765–777
Bourillot [4] stated that the Merkel method is simple

to use and can correctly predict cold water temperature

when an appropriate value of the coefficient of evapora-

tion is used. In contrast, it is insufficient for the estima-

tion of the characteristics of the warm air leaving the fill

and for the calculation of changes in the water flow rate

due to evaporation. These quantities are important to

estimate water consumption and to predict the behavior

of plumes exiting the cooling tower.

Jaber and Webb [3] developed the equations neces-

sary to apply the e-NTU method directly to counterflow

or crossflow cooling towers. This approach is particu-

larly useful in the latter case and simplifies the method

of solution when compared to a more conventional

numerical procedure. The e-NTU method is based on

the same simplifying assumptions as the Merkel method.

The method of Poppe, developed in the 1970s, does

not make the simplifying assumptions of Merkel. Predic-

tions from the Poppe formulation result in values of

evaporated water flow rate that are in good agreement

with full scale cooling tower test results. In addition,

the Poppe method predicts the water content of the exit-

ing air accurately [4,5]. The fact that the Poppe method

predicts the water content of the exiting air accurately is

a very important consideration in the design of hybrid

cooling towers [6].

Section 2 gives the detailed derivation of the govern-

ing equations according to the Poppe method. The Mer-

kel method is discussed in Section 3. Section 3 also

shows where in the derivation of the governing equa-
tions, according to the Poppe method, the Merkel meth-

od assumptions take effect to simplify the solution of the

equations considerably. The e-NTU method, which is

based on the same simplifying assumptions as the Mer-

kel method, is presented in Section 4. The discussion on

the differences between the methods and the conclusion

are presented in Sections 5 and 6 respectively.
2. Poppe method

The following two subsections where the governing

equations of the evaporative cooling process are derived

according to the Poppe method of analysis, are adapted

from Bourillot [5], Poppe and Rögener [2], Kröger [7]

and Baard [8]. The procedure to calculate the Merkel

number, according to the Poppe method, is extended in

the current derivation to give a more detailed representa-

tion of the integration of the Merkel number in the count-

erflow transfer region. The governing equations that

follow can be solved by the fourth order Runge–Kutta

method. Refer to Appendix B for the procedure to solve

the governing equations by the Runge–Kutta method.

2.1. Governing equations for heat and mass transfer in

fill for unsaturated air

Fig. 1 shows a control volume in the fill of a counter-

flow wet-cooling tower. Fig. 2 shows an airside control

volume of the fill illustrated in Fig. 1.



Fig. 1. Control volume of counterflow fill.

Fig. 2. Air side control volume of the fill.
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A mass balance for the control volume in Fig. 1

yields

dmw ¼ madw ð1Þ

The energy balance for the control volume of the fill

in Fig. 1 is as follows:

madima � mwdiw � iwdmw ¼ 0 ð2Þ

where ima is the enthalpy of the air–vapor mixture ex-

pressed by Eq. (A.1).

Substitute Eq. (1) into Eq. (2) to find upon

rearrangement,

dT w ¼ ma

mw

1

cpw

dima � T wdw
� �

ð3Þ

Consider the interface between the water and the air

in Fig. 2. An energy balance at the interface yields

dQ ¼ dQm þ dQc ð4Þ
where dQm is the enthalpy transfer due to difference in

vapor concentration between the saturated air at the

interface and the mean stream air and dQc is the sensible

heat transfer due to the difference in temperature. The

mass transfer at the interface is expressed by

dmw ¼ hdðwsw � wÞdA ð5Þ

The corresponding enthalpy transfer for the mass

transfer in Eq. (5) is

dQm ¼ ivdmw ¼ ivhdðwsw � wÞdA ð6Þ

The enthalpy of the water vapor, iv, at the bulk water

temperature, Tw, is given by

iv ¼ ifgwo þ cpvT w ð7Þ

The convective heat transfer from Fig. 2 is given by

dQc ¼ hðT w � T aÞdA ð8Þ

The temperature differential in Eq. (8) can be

replaced by an enthalpy differential. The enthalpy of sat-

urated air evaluated at the local bulk water temperature

is given by

imasw ¼ cpaT w þ wswðifgwo þ cpvT wÞ ð9Þ

Substitute Eq. (7) into Eq. (9), rearrange and find

imasw ¼ cpaT w þ wiv þ ðwsw � wÞiv ð10Þ

The enthalpy of the air–water vapor mixture per unit

mass of dry air which, according to Eq. (A.1), is ex-

pressed by

ima ¼ cpaT a þ wðifgwo þ cpvT aÞ ð11Þ

Subtract Eq. (11) from (10). The resultant equation

can be simplified if the small differences in specific heats,

which are evaluated at different temperatures, are

ignored.

T w � T a ¼
ðimasw � imaÞ � ðwsw � wÞiv

cpma

ð12Þ

where cpma is given by Eq. (A.5).

Substitute Eq. (12) into Eq. (8). Substitute the result-

ant equation and Eq. (6) into Eq. (4) to find after

rearrangement,

dQ ¼ hd

h
cpmahd

ðimasw � imaÞ
�

þ 1 � h
cpmahd

� �
ivðwsw � wÞ

�
dA ð13Þ

h/cpmahd in Eq. (13) is known as the Lewis factor Lef and

is an indication of the relative rates of heat and mass

transfer in an evaporative process. Bosnjakovic [9]
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developed an empirical relation for the Lewis factor Lef
for air–water vapor systems. The Lewis factor for

unsaturated air, according to Bosnjakovic [9] is given by

Lef ¼ 0:8650:667 wsw þ 0:622

wþ 0:622
� 1

� �
ln

wsw þ 0:622

wþ 0:622

� �� ��

ð14Þ

Refer to Kloppers [10] for a discussion on the deriva-

tion and development of Eq. (14). Other equations, gi-

ven by Kloppers [10], can be employed to express the

Lewis factor. He shows that it is very important to em-

ploy the same equation or definition for the Lewis factor

in the fill performance analysis and in the subsequent

cooling tower performance analysis if the water outlet

temperature is to be calculated accurately. The water

evaporation rate, however, is a function of the actual
dw
dT w

¼
cpw

mw

ma
ðwsw � wÞ

imasw � ima þ ðLef � 1Þ½imasw � ima � ðwsw � wÞiv� � ðwsw � wÞcpwT w

ð20Þ

dima

dT w

¼ mwcpw

ma

1 þ ðwsw � wÞcpwT w

imasw � ima þ ðLef � 1Þ½imasw � ima � ðwsw � wÞiv� � ðwsw � wÞcpwT w

� �
ð21Þ
value of the Lewis factor, especially when the ambient

air is relatively warm.

The enthalpy transfer to the air stream from Eq. (13)

is

dima ¼
1

ma

dQ

¼ hddA
ma

½Lefðimasw � imaÞ þ ð1 � LefÞivðwsw � wÞ�

ð15Þ

For a one-dimensional model of the cooling tower

fill, where the available area for heat and mass transfer

is the same at any horizontal section through the fill,

the transfer area for a section dz is usually expressed as

dA ¼ afiAfrdz ð16Þ

where afi is the area density of the fill, i.e. the wetted area

divided by the corresponding volume of the fill and Afr is

the corresponding frontal area or face area. Substitute

Eq. (16) into Eq. (15) and find
dima

dz
¼ hdafiAfr

ma

½Lefðimasw � imaÞ þ ð1 � LefÞivðwsw � wÞ�

ð17Þ

Substitute Eqs. (5) and (15) into Eq. (2), rearrange

and find,

mwdiw ¼hddA½imasw � ima þ ðLef � 1Þ½imasw � ima

� ðwsw � wÞiv� � ðwsw � wÞcpwT w� ð18Þ

Find upon rearrangement of Eq. (3)

dw
dT w

¼ 1

cpwT w

dima

dT w

� 1

T w

mw

ma

or

dw
dT w

¼ dima

T wdiw
� 1

T w

mw

ma

ð19Þ

Substitute Eqs. (15) and (18) into Eq. (19) and find,
Substitute Eq. (20) into Eq. (19) and find,
From Eqs. (1) and (5) find

hddA ¼ madw
wsw � w

ð22Þ

Divide both sides by mw and introduce dTw/dTw to

the right hand side of Eq. (22) and integrate to find

Z
hd

mw

dA ¼
Z

ma

mw

dw=dT w

wsw � w
dT w ð23Þ

From Eq. (23) find

hdA
mw

¼
Z

ma

mw

dw=dT w

wsw � w
dT w ð24Þ

Eq. (24) is defined as the Merkel number according to

the Poppe method i.e.

MeP ¼
Z

ma

mw

dw=dT w

wsw � w
dT w ð25Þ

Upon substitution of Eq. (20) into Eq. (25) and

differentiation of the latter with respect to the water

temperature, find



MeP

dT w

¼ cpw

imasw � ima þ ðLef � 1Þ½imasw � ima � ðwsw � wÞiv� � ðwsw � wÞcpwT w

ð26Þ

J.C. Kloppers, D.G. Kröger / International Journal of Heat and Mass Transfer 48 (2005) 765–777 769
The ratio of the mass flow rates mw/ma changes as the

air moves towards the top of the fill. The change in the

mass flow rate is determined by considering the control

volume of a portion of the fill illustrated in Fig. 3.

The varying water mass flow rate can be determined

from the known inlet water mass flow rate, mwi. From

the control volume in Fig. 3 a mass balance will yield,

mwi ¼ mw þ maðwo � wÞ ð27Þ

After rearrangement of Eq. (27) find,

mw

ma

¼ mwi

ma

1 � ma

mwi

ðwo � wÞ
� �

ð28Þ

From Eqs. (14), (20), (21) and (28) the air outlet con-

ditions in terms of enthalpy and humidity ratio can be

calculated. The value for wo in Eq. (28) is not known a

priori and the equations must therefore be solved by

an iterative procedure.

The preceding system of equations is only applicable

for unsaturated air. In some cases, the air can become

saturated before it leaves the fill [7]. Because the water

temperature is still higher than the temperature of the

air, the potential for heat and mass transfer still exists.

Under these conditions, the excess water vapor will con-

dense as a mist.

2.2. Governing equations for heat and mass transfer in

fill for supersaturated air

The control volumes in Figs. 1 and 2 are also appli-

cable if the air is supersaturated. Since the excess water

vapor will condense as a mist, the enthalpy of supersatu-

rated air is expressed by
Fig. 3. Control volume of the fill.
iss ¼ cpaT a þ wsaðifgwo þ cpvT aÞ þ ðw� wsaÞcpwT a ð29Þ

where wsa is the humidity ratio of saturated air at tem-

perature Ta.

Assume that the heat and mass transfer coefficients

for supersaturated and unsaturated air are the same as

proposed by Bourillot [5] and Poppe and Rögener [2].

The driving potential for mass transfer is the humidity

ratio difference between the saturated air at the air–

water interface and the saturated free stream air, thus

dmw ¼ hdðwsw � wsaÞdA ð30Þ

The enthalpy driving potential for supersaturated air

can be obtained by subtracting Eq. (29) from Eq. (10).

By introducing,

ðw� wsaÞcpwT w � ðw� wsaÞcpwT w þ wsacpvT w � wsacpvT w

which adds up to zero into the resultant enthalpy differ-

ential, the temperature differential can be obtained by

manipulation

T w � T a ¼
imasw � iss � ðwsw � wsaÞiv þ ðw� wsaÞcpwT w

cpmas

ð31Þ

where cpmas is the specific heat of supersaturated air per

unit mass and defined as

cpmas ¼ cpa þ wsacpv þ ðw� wsaÞcpw ð32Þ

Proceeding along the same lines as in the case of

unsaturated air, using Eqs. (30) and (31) instead of

Eqs. (5) and (12) find for supersaturated air

dima ¼
hddA
ma

½Leffimasw � iss � ðwsw � wsaÞiv

þ ðw� wsaÞcpwT wg þ ðwsw � wsaÞiv� ð33Þ

where the Lewis factor, Lef, is equal to h/hdcpmas. Poppe

employed the empirical relation of Bosnjakovic [9] to

calculate the Lewis factor, which for supersaturated air

is given by

Lef ¼ 0:8650:667 wsw þ 0:622

wsa þ 0:622
� 1

� �
ln

wsw þ 0:622

wsa þ 0:622

� �� ��

ð34Þ

Substitute Eqs. (30) and (33) into Eq. (2) and find

after rearrangement

mwdiw ¼ mwcpwdT w ¼ hddA


 Leffimasw � iss � ðwsw � wsaÞiv þ ðw� wsaÞcpwT wg
þðwsw � wsaÞiv � ðwsw � wsaÞcpwT w

� �

ð35Þ
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By introducing

½imasw � iss � ðwsw � wsaÞiv þ ðw� wsaÞcpwT w�
� ½imasw � iss � ðwsw � wsaÞiv þ ðw� wsaÞcpwT w�

into the main parenthesis on right hand side of Eq. (35)

the following equation yields after rearrangement:

mwdiw ¼ mwcpwdT w ¼ hddA


 imasw � iss þ ðLef � 1Þ
imasw � iss � ðwsw �wsaÞiv
þðw�wsaÞcpwT w

� �

þðw�wswÞcpwT w

2
64

3
75

ð36Þ
dMep

dT w

¼ cpw

imasw � iss þ ðLef � 1Þ
imasw � iss � ðwsw � wsaÞiv
þðw� wsaÞcpwT w

� �
þ ðw� wswÞcpwT w

ð43Þ
Substitute Eq. (30) into Eq. (1) and find,

hddA ¼ madw
ðwsw � wsaÞ

ð37Þ

Substitute Eq. (37) into Eq. (36) and find,
dw
dT w

¼
cpw

mw

ma
ðwsw � wsaÞ

imasw � iss þ ðLef � 1Þ
imasw � iss � ðwsw � wsaÞiv
þðw� wsaÞcpwT w

� �
þ ðw� wswÞcpwT w

ð38Þ
Substitute Eq. (38) into Eq. (19) and find upon

rearrangement,
dima

dT w

¼ cpw

mw

ma

1 þ cpwT wðwsw � wsaÞ

imasw � iss þ ðLef � 1Þ
imasw � iss � ðwsw � wsaÞiv
þðw� wsaÞcpwT w

� �
þ ðw� wswÞcpwT w

0
BBB@

1
CCCA ð39Þ
From Eqs. (1) and (30) find
hddA ¼ madw

wsw � wsa

ð40Þ
Divide both sides of Eq. (40) by mw, introduce dTw/

dTw to the right hand side of Eq. (40) and integrate to

find
Z
hd

mw

dA ¼
Z

ma

mw

dw=dT w

wsw � wsa

dT w ð41Þ

Eq. (41) is defined as the Merkel number according to

the Poppe method i.e.

Mep ¼ hdA
mw

¼
Z

ma

mw

dw=dT w

wsw � wsa

dT w ð42Þ
Upon substitution of Eq. (38) into Eq. (42) and dif-

ferentiation of the latter with respect to water tempera-

ture, find
From Eqs. (28), (34), (38) and (39), the air outlet con-

ditions in terms of enthalpy and humidity ratio can be

calculated.

The fourth order Runge–Kutta method is employed

to solve the system of equations. Refer to Appendix B
for the implementation of the Runge–Kutta method to

solve the governing equations of the Poppe method.
Refer to Kloppers [10] for detailed sample calculations

to solve the governing equations according to the Poppe

method.
3. Merkel method

To simplify the analysis of an evaporative cooling

process Merkel [1] assumed that the evaporative loss is
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negligible, i.e. dw = 0 from Eq. (3), and that the Lewis

factor is equal to one. Eqs. (17) and (3) of the counter-

flow evaporative process simplify respectively to

dima

dz
¼ hdafiAfr

ma

ðimasw � imaÞ ð44Þ

and by dividing Eq. (3) by dz on both sides of Eq. (3) to

dT w

dz
¼ ma

mw

1

cpw

dima

dz
ð45Þ

Eqs. (44) and (45) describe respectively the change in

the enthalpy of the air–water vapor mixture and the

change in water temperature as the air travel distance

changes. Eqs. (44) and (45) can be combined to yield

upon integration the Merkel equation

MeM ¼ hdA
mw

¼ hdafiAfrLfi

mw

¼ hdafiLfi

Gw

¼
Z Twi

Two

cpwdT w

ðimasw � imaÞ
ð46Þ

where MeM is the Merkel number according to the Mer-

kel method. In the literature the notation frequently

used for the Merkel number is KaV/L where K = hd,

a = afi and L = mw. It is not possible to calculate the

state of the air leaving the fill according to Eq. (46).

Merkel assumed that the air leaving the fill is saturated

with water vapor. This assumption enables the approxi-

mate air temperature leaving the fill to be calculated.

Eq. (46) is not self-sufficient so it does not lend itself

to direct mathematical solution [11,12]. The usual proce-

dure is to integrate it in conjunction with an energy bal-

ance expressed by

mwcpwmdT w ¼ madima ð47Þ

Fig. 4 shows the enthalpy curves of the air in a count-

erflow wet-cooling tower. The fill test results, from
20000
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E
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Fig. 4. Enthalpy diagram o
which Fig. 4 is generated, are given in Kröger [7]. The

ima curve i.e. the enthalpy of the air as it moves through

the fill, shown in Fig. 4, is linear due to the linear nature

of Eq. (47). The imasw curve is the saturation curve of the

air at the water interface temperature. The potential for

heat and mass transfer at a particular water temperature

is the difference between imasw and ima. The Merkel num-

ber,MeM, of Eq. (46), is a function of the area under the

1/(imasw � ima) curve as shown in Fig. 4.

The integral in Eq. (46) needs to be evaluated by

numerical integration techniques. The British Standard

[13] and the Cooling Tower Institute [14,15] recommend

that the four-point Chebyshev integration technique be

employed. A discussion of the Chebyshev integration

technique can also be found in Oosthuizen [16] and

Mohiuddin and Kant [17]. Kelly [18] states that the

Chebyshev procedure lacks accuracy when the approach

(i.e. the difference between the water outlet temperature

and the air inlet wetbulb temperature) is small (down

to 0.56 �C). Any integration technique can be employed

to solve Eq. (46) but it is strongly recommended that

the same integration technique be employed in the fill

performance analysis and the subsequent cooling tower

performance analysis. The four-point Chebyshev

integration technique essentially uses four intervals for

the determination of the integral. Li and Priddy [19]

and Mills [20] use thirteen and seven intervals respec-

tively for numerical integration to determine the change

of water and air enthalpy through the fill for a cooling

range of approximately 14 �C. Li and Priddy [19] effec-

tively employ a Riemann sum [21] to determine the inte-

gral while Mills [20] employs the composite trapezoidal

rule [22]. It was found by the authors that the Chebyshev

procedure is generally very accurate when compared to

the composite Simpson rule with 100 intervals which

has an error of the fourth order [23].
08 310 312 314
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As already mentioned, the driving potential in wet-

cooling towers is the difference between the enthalpies

imasw and ima as shown in Fig. 4. The ima curve is ob-

tained from Eq. (47) that ignores the change in water

flow rate due to evaporation. The effect of evaporation

on the energy balance is thus ignored for a second time.

It was first ignored when Eq. (46) was derived. Baker

and Shryock [11] investigated the effect of this second in-

stance where the evaporation is ignored in the energy

balance. They considered three different cases and found

that the Merkel number increases with the more accu-

rate representations of the energy balance. The Merkel

number, however, does not increase as much for the

most accurate case investigated as for the second most

accurate case. The maximum increase in the Merkel

number is 4.4%. Again, it is stressed that the same en-

ergy balance be employed in the fill performance analy-

sis and the subsequent cooling tower performance

analysis.

Curves are published in the literature to determine

the Merkel number in Eq. (46) by graphical means from

known air and water temperatures and air and water

mass flow rates. Curves to determine the tower charac-

teristic for counterflow towers, are given by the CTI

[24]. Since the advent of high speed digital computers,

these curves are less frequently used.
4. e-NTU method

Jaber and Webb [3] developed the equations neces-

sary to apply the e-NTU method directly to counterflow

or crossflow cooling towers. Kröger [7] gives a detailed

derivation and implementation of the e-NTU method

applied to evaporative air–water systems.

It can be shown according to Jaber and Webb [3] that

dðimasw � imaÞ
ðimasw � imaÞ

¼ hd

dimasw=dT w

mwcpw

� 1

ma

� �
dA ð48Þ

Eq. (48) corresponds to the heat exchanger e-NTU

equation

dðT h � T cÞ
ðT h � T cÞ

¼ �U
1

mhcph

þ 1

mccpc

� �
dA ð49Þ

Two possible cases of Eq. (48) can be considered

where ma is greater or less than mwcpw/(dimasw/dTw).

The maximum of ma and mwcpw/(dimasw/dTw) is denoted

by Cmax and the minimum by Cmin. The gradient of the

saturated air enthalpy–temperature curve is

dimasw

dT w

¼ imaswi � imaswo

T wi � T wo

ð50Þ

The fluid capacity rate ratio is defined as

C ¼ Cmin=Cmax ð51Þ
The effectiveness is given by

e ¼ Q
Qmax

¼ mwcpwðT wi � T woÞ
Cminðimaswi � k � imaiÞ

ð52Þ

where k is a correction factor, according to Berman [25],

to improve the approximation of the imasw versusTw curve

as a straight line. The correction factor, k, is given by

k ¼ ðimaswo þ imaswi � 2imaswmÞ=4 ð53Þ

where imaswm denotes the enthalpy of saturated air at the

mean water temperature. The number of transfer units

for counterflow cooling towers is given by

NTU ¼ 1

1 � C
ln

1 � eC
1 � e

ð54Þ

If ma is greater than mwcpw/(dimasw/dTw) the Merkel

number according to the e-NTU method is given by

Mee ¼
cpw

dimasw=dT w

NTU ð55Þ

If ma is less than mwcpw/(dimasw/dTw) the Merkel

number according to the e-NTU method is given by

Mee ¼
ma

mw

NTU ð56Þ
5. Discussion

It is expected that the Poppe method will lead to

more accurate results than those obtained by employing

the Merkel and e-NTU methods, as it is the more rigor-

ous method. The results of the Merkel and e-NTU meth-

ods of analysis are generally very close to each other as

these methods are based on the same simplifying

assumptions. The comparison between the Poppe and

Merkel methods is shown on the psychrometric charts

in Figs. 5 and 6. The conventional psychrometric chart

is extended to accommodate air that is in the supersatu-

rated state. The enthalpy of supersaturated air on the

psychrometric chart is given by Eq. (29).

Fig. 5 shows the heating path of the state of the air in

a wet-cooling tower for relatively cold inlet air which is

saturated with water vapor in this particular example.

The path of the air according to the Merkel method is

shown as a broken straight line in Fig. 5. The line for

the Merkel method is presented as a broken line because

straight lines can only be used on psychrometric charts if

the temperature of the water surface is constant. The line

according to the Merkel method is presented as a

straight line because no other information is given by

the Merkel method about the humidity of the air except

that it is saturated at the air outlet side. That is why the

air at the outlet of the cooling tower is assumed to be on

the saturation line as shown in Fig. 5.

The Poppe method, on the other hand, gives the state

of the air for the entire evaporative process. Since the



Fig. 5. Path of air in a wet-cooling tower indicated on a supersaturated psychrometric chart.

Fig. 6. Psychrometric chart of a water cooling process when the

inlet ambient air is hot and very dry.
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inlet air is saturated with water vapor, indicated by

point 1 in Fig. 5, it immediately becomes supersaturated,

according to the Poppe method, as it enters the fill. As

the air is heated and the humidity ratio increases, due

to the latent heat transfer from the water, it follows

the saturation curve very closely. This is because as the

air is heated, it can contain more water vapor before it

reaches the point of saturation.

Point 2b in Fig. 5 shows the state of the air at the out-

let of the heat and mass transfer area or fill in the cool-

ing tower according to the Poppe method. Point 2a in

Fig. 5 shows the outlet air state according to the Merkel

method. It shows that the air is saturated at the outlet

according to Merkel. The outlet air temperatures

according to the Merkel and Poppe analyses are rela-

tively close to each other in Fig. 5. The assumption of

Merkel that the outlet air is saturated is, therefore, a

very good assumption if the actual outlet air tempera-

ture is supersaturated.

The degree of supersaturation does not have a great

influence on the relative difference between the outlet

air temperatures predicted by the Merkel and Poppe

analyses. This is because, as seen in Fig. 5, the lines of
constant air enthalpy in the supersaturated region are

very close to vertical. Therefore, it does not matter

how much water vapor and mist are present in the super-

saturated air, for a specific air enthalpy, the air temper-

ature will be approximately constant. The difference in

the air temperatures at point 2a and 2b in Fig. 5, for

the Merkel and Poppe methods, respectively, can be re-

duced by improving the energy balance employed by the

Merkel method where the approximate loss of water

due to evaporation in the energy balance is neglected.

Refer to Kloppers and Kröger [26] where the loss of

water due to evaporation is accounted for in the energy

balance.

Fig. 6 shows the heating path of the air in the cooling

tower for hot inlet air which is virtually void of water va-

por. Point 1 in Fig. 6 shows the state of the inlet air on a

psychrometric chart. Point 2b in Fig. 6 shows the state

of the air at the outlet of the heat and mass transfer re-

gion of the cooling tower according to the Poppe meth-

od. The outlet air is colder than the inlet air. Point 2a

shows the outlet air state according to the Merkel

method.

Fig. 6 shows that the outlet air is saturated according

to the Merkel method. The outlet air temperatures,

according to the Merkel and Poppe analyses, are not

very close to each other. The outlet air temperatures pre-

dicted by the Merkel and Poppe analyses lie approxi-

mately on the same constant enthalpy line in Fig. 6 as

was the case in Fig. 5 when the outlet air was supersatu-

rated according to the Poppe method. In the unsatu-

rated region, however, the lines of constant enthalpy

are far from vertical and therefore the large discrepancy

in the temperatures. The assumption of Merkel that the

outlet air is saturated with water vapor is not as accurate

if the actual outlet air is unsaturated as when it is

supersaturated.

Fig. 4 shows the enthalpy diagram for the particular

example according to the Merkel method while Fig. 7

shows the differences in the enthalpy diagrams between
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the Merkel and Poppe methods. The imasw curves of the

two methods fall on top of each other. There is a small

discrepancy in the ima curves of the two different meth-

ods, especially at the hot water side. It can be seen that

the Poppe method predicts an approximately linear var-

iation of the air enthalpy for this specific case but the

gradient is different from that predicted by the Merkel

method. The 1/(imasw � ima) curve of the Poppe method

lies above the 1/(imasw � ima) curve of the Merkel meth-

od. As the transfer characteristic, or Merkel number, is a

function of the area under the 1/(imasw � ima) curve, the

Merkel number according to the Poppe method will be

greater than the Merkel number predicted by the Merkel

method. It is therefore very important that the same

method of method (i.e. Merkel, Poppe or e-NTU) be em-

ployed in the fill performance test and the subsequent

cooling tower performance method.

The results of the Merkel, Poppe and e-NTU analyses

presented in this study, applied to the evaluation of cool-

ing tower performance, are given in Kloppers and Krö-

ger [26].
6. Conclusion

The governing equations according to the Poppe,

Merkel and e-NTU methods of method are derived

and presented. The governing equations of the Poppe

method are expanded to give a more accurate represen-

tation of the calculation of the Merkel number. A de-

tailed procedure is presented of how to solve the

governing equations with its unique requirements. The

Poppe method is especially suited to be employed in

the analysis of hybrid cooling towers as the state of

the outlet air is accurately determined. The differences

between the Merkel and Poppe methods of analysis of

evaporative cooling are explained by enthalpy diagrams

and psychrometric charts which leads to a better under-
standing of the implications of the assumptions made by

Merkel. The Merkel and e-NTU methods of analysis

give approximately identical results as it is based on

the same simplifying assumptions. It is clear from the

discussion that the same method of analysis must be em-

ployed in the fill performance test and the subsequent

cooling tower performance analysis. The psychrometric

chart is expanded to accommodate air that is in the

supersaturated state.
Appendix A. Thermophysical properties

The thermophysical properties summarized here are

presented in Kröger [7]. Refer to Kröger [7] for the

ranges of applicability of the following equations of

the thermophysical properties. All the temperatures are

expressed in Kelvin.

The enthalpy of the air–water vapor mixture is given

by

ima ¼ cpaðT � 273:15Þ
þ w½ifgwo þ cpvðT � 273:15Þ� J=kg dry air ðA:1Þ

where the specific heats, cpa and cpv, are evaluated at

(T + 273.15)/2 by Eqs. (A.2) and (A.4) respectively.

The latent heat ifgwo, is evaluated at 273.15K according

to Eq. (A.8).

The specific heat of dry air is given by

cpa ¼ 1:045356 
 103 � 3:161783 
 10�1T

þ 7:083814 
 10�4T 2 � 2:705209


 10�7T 3 J=kgK ðA:2Þ

The vapor pressure of saturated water vapor is given

by

pv ¼ 10z N=m2 ðA:3Þ
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where

z ¼ 10:79586ð1 � 273:16=T Þ þ 5:02808log10ð273:16=T Þ
þ 1:50474 
 10�4½1 � 10�8:29692fðT =273:16Þ�1g� þ 4:2873


 10�4½104:76955ð1�273:16=T Þ � 1� þ 2:786118312

The specific heat of saturated water vapor is given by

cpv ¼ 1:3605 
 103 þ 2:31334T � 2:46784 
 10�10T 5

þ 5:91332 
 10�13T 6 J=kgK ðA:4Þ
The specific heat of mixtures of air and water vapor is

given by

cpma ¼ ðcpa þ wcpvÞ J=Kkg dry air ðA:5Þ

The humidity ratio is given by
w ¼ 2501:6 � 2:3263ðT wb � 273:15Þ
2501:6 þ 1:8577ðT � 273:15Þ � 4:184ðT wb � 273:15Þ

� �
0:62509pvwb

pa � 1:005pvwb

� �


 � 1:00416ðT � T wbÞ
2501:6 þ 1:8577ðT � 273:15Þ � 4:184ðT wb � 273:15Þ

� �
ðA:6Þ
where pvwb is the vapor pressure from Eq. (A.3) eval-

uated at the wetbulb temperature.

The specific heat of water is given by

cpw ¼ 8:15599 
 103 � 2:80627 
 10T þ 5:11283


 10�2T 2 � 2:17582 
 10�13T 6 J=kgK ðA:7Þ

The latent heat of water is given by

ifgw ¼ 3:4831814 
 106 � 5:8627703 
 103T

þ 12:139568T 2 � 1:40290431


 10�2T 3 J=K ðA:8Þ

ifgwo is obtained from Eq. (A.8) where T = 273.15.
Fig. B.1. Counterflow fill divided into five intervals.
Appendix B. Solving the system of differential equations

B.1. Solving procedure

The fourth order Runge–Kutta method [5,22,23] is

employed to solve the system of differential equations

for unsaturated and supersaturated air. The system of

equations for unsaturated air (including saturated air)

is represented by Eqs. (20), (21) and (26). The system

of equations for supersaturated air is represented by

Eqs. (38), (39) and (43). In the equations that follow,

ima must be replaced by iss for supersaturated air.

The first step in the solution process is to divide the

fill into a number of intervals where the water tempera-

ture difference is equal across each interval, i.e.
DT w ¼ ðT wi � T woÞ=ðNumber of intervalsÞ ðB:1Þ

Fig. B.1 shows an example where the fill is divided

into five intervals. It is necessary to divide the fill into

more than one interval to capture, as accurately as pos-

sible, the point at which the air becomes supersaturated.

This is because a different set of equations is applicable

for supersaturated air. Approximately five intervals are

generally sufficient to obtain accurate results. It was

mentioned that the value of wo is not known a priori.

A value of wo is guessed and a new value of wo is subse-

quently determined. The equations are solved until the

value of wo converges. Only a few of these iterations

are generally necessary to obtain convergence.
The equations are solved across one interval at a time

by the Runge–Kutta method, which is explained in Sec-

tion B.2. The air, which is generally unsaturated, enters

the fill at Level (0) in Fig. B.1 with wi, imai, ma known.

The values of w(1) and ima(1) are then determined by

the Runge–Kutta method with the set of equations for

unsaturated air. ma remains constant. It is then deter-

mined whether the air is still unsaturated or if it is super-

saturated at the outlet of the first interval (i.e. at level (1)

in Fig. B.1). If the air is supersaturated, the set of equa-

tions for supersaturated air must be solved across the

next interval. If the air is supersaturated it will generally
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remain in the supersaturated state through the rest of the

fill.

The following procedure can be followed to deter-

mine whether the air at the outlet of an interval, as indi-

cated in Fig. B.1, is unsaturated or supersaturated:

assume that the air at level (1), for example, is unsatu-

rated and determine Ta(1) from Eq. (A.1) by iterative

means with w(1) and ima(1) known. Then assume that

the air is saturated and determine the wetbulb tempera-

ture, Twb(1) from Eq. (A.6). T = Twb in Eq. (A.6) when

the air is saturated. If Ta(1) > Twb(1) then the assumption

that the air is unsaturated is correct. If Twb(1) > Ta(1),

which is impossible, the air is supersaturated. The actual

value of the wetbulb temperature is then Twb(1) = Ta(1).

B.2. Implementation of the fourth order Runge–Kutta

method

Eqs. (20), (21) and (26) for unsaturated and saturated

air or Eqs. (38), (39) and (43) for supersaturated air can

be respectively written as

dw
dT w

¼ f ðw; ima; T wÞ ðB:2Þ

dima

dT w

¼ gðw; ima; T wÞ ðB:3Þ

dMeP

dT w

¼ hðw; ima; T wÞ ðB:4Þ

Refer to Fig. B.1. The cooling tower fill is divided

into one or more intervals with the same water temper-

ature difference across each interval. In addition to the

intervals, levels are specified (a level is an imaginary hor-

izontal plane through the fill at the top and bottom of

the fill and between two fill intervals). Initial values of

the variables w, ima and Tw are required on a particular

level, say level (n). The values of the variables can then

be determined at level (n + 1) with the aid of Eqs.

(B.5)–(B.7).

wðnþ1Þ ¼ wðnÞ þ ðjðnþ1;1Þ þ 2jðnþ1;2Þ þ 2jðnþ1;3Þ þ jðnþ1;4ÞÞ=6
ðB:5Þ

imaðnþ1Þ ¼ imaðnÞ þ ðkðnþ1;1Þ þ 2kðnþ1;2Þ þ 2kðnþ1;3Þ þ kðnþ1;4ÞÞ=6
ðB:6Þ

MePðnþ1Þ ¼MePðnÞ þðlðnþ1;1Þ þ2lðnþ1;2Þ þ2lðnþ1;3Þ þlðnþ1;4ÞÞ=6
ðB:7Þ

where

jðnþ1;1Þ ¼ DT w � f ðT wðnÞ; imaðnÞ;wðnÞÞ ðB:8Þ

kðnþ1;1Þ ¼ DT w � gðT wðnÞ; imaðnÞ;wðnÞÞ ðB:9Þ
lðnþ1;1Þ ¼ DT w � hðT wðnÞ; imaðnÞ;wðnÞÞ ðB:10Þ

jðnþ1;2Þ ¼ DT w

� f T wðnÞ þ
DT w

2
; imaðnÞ þ

kðnþ1;1Þ

2
;wðnÞ þ

jðnþ1;1Þ

2

� �

ðB:11Þ

kðnþ1;2Þ ¼ DT w

� g T wðnÞ þ
DT w

2
; imaðnÞ þ

kðnþ1;1Þ

2
;wðnÞ þ

jðnþ1;1Þ

2

� �

ðB:12Þ

lðnþ1;2Þ ¼ DT w

� h T wðnÞ þ
DT w

2
; imaðnÞ þ

kðnþ1;1Þ

2
;wðnÞ þ

jðnþ1;1Þ

2

� �

ðB:13Þ

jðnþ1;3Þ ¼ DT w

� f T wðnÞ þ
DT w

2
; imaðnÞ þ

kðnþ1;2Þ

2
;wðnÞ þ

jðnþ1;2Þ

2

� �

ðB:14Þ

kðnþ1;3Þ ¼ DT w

� g T wðnÞ þ
DT w

2
; imaðnÞ þ

kðnþ1;2Þ

2
;wðnÞ þ

jðnþ1;2Þ

2

� �

ðB:15Þ

lðnþ1;3Þ ¼ DT w

� h T wðnÞ þ
DT w

2
; imaðnÞ þ

kðnþ1;2Þ

2
;wðnÞ þ

jðnþ1;2Þ

2

� �

ðB:16Þ

jðnþ1;4Þ ¼ DT w

� f T wðnÞ þ DT w; imaðnÞ þ kðnþ1;3Þ;wðnÞ þ jðnþ1;3Þ

� �
ðB:17Þ

kðnþ1;4Þ ¼ DT w

� g T wðnÞ þ DT w; imaðnÞ þ kðnþ1;3Þ;wðnÞ þ jðnþ1;3Þ

� �
ðB:18Þ

lðnþ1;4Þ ¼ DT w

� h T wðnÞ þ DT w; imaðnÞ þ kðnþ1;3Þ;wðnÞ þ jðnþ1;3Þ

� �
ðB:19Þ

The four variables in the Runge–Kutta method are

Tw, w, iss or ima and MeP from the left-hand side of

Eqs. (20), (21) and (26) for unsaturated air and Eqs.

(38), (39) and (43) for supersaturated air. For this reason

Eqs. (B.2)–(B.4) are functions of only w, ima or iss and
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Tw. Most of the other variables are functions of these

variables. Eqs. (B.2)–(B.4) are not functions of MeP be-

cause dMeP/dTw is a function of dw/dTw as can be seen

from Eq. (42). Thus, Eqs. (20) and (21) for unsaturated

air, or Eqs. (38) and (39) for supersaturated air can be

solved without Eq. (26) or Eq. (43) respectively.
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VDI-Wärmeatlas (1991) Mi 1–Mi 15.

[3] H. Jaber, R.L. Webb, Design of cooling towers by the

effectiveness-NTU method, J. Heat Transfer 111 (1989)

837–843.

[4] C. Bourillot, On the hypothesis of calculating the water

flowrate evaporated in a wet cooling tower, EPRI Report

CS-3144-SR, August 1983.

[5] C. Bourillot, TEFERI, Numerical model for calculating

the performance of an evaporative cooling tower, EPRI

Report CS-3212-SR, August 1983.

[6] M. Roth, Fundamentals of heat and mass transfer in wet

cooling towers. All well known or are further developments

necessary? in: Proceedings of the 12th IAHR Symposium

in Cooling Towers and Heat Exchangers, UTS, Sydney,

Australia, November, 2001, pp. 100–107.
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